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Purpose. To develop a quantitative scheme to describe and predict asparagine deamidation in
polypeptides using chemometric models employing reduced physicochemical property scales of amino
acids.
Methods. Deamidation rates for 306 pentapeptides, Gly-(n−1)-Asn-(n+1)-Gly, with the residues n−1 and
n+1 varying over the naturally occurring amino acids, were obtained from literature. A multivariate
regression technique, called projection to latent structures (PLS), was used to establish mathematical
relationships between the physicochemical properties and the deamidation half-lives of the amino acid
sequences. Three reduced physicochemical property scales, amide hydrogen exchange rates (to describe
the relative acidity of the amide protons) and flexibility parameters for the sequences were evaluated for
their predictive capacity.
Results. The most effective descriptors of the deamidation half-lives were reduced-property parameters
for amino acids called zz-scores. The PLS models with the reduced property scales, combined with the
hydrogen exchange rates and/or flexibility parameters, explained more than 95% of the sequence-
dependent variation in the deamidation half-lives. The amide hydrogen exchange rate (i.e., amide proton
acidity), hydrophilicity, polarizability, and size of amino acids in position n+1 were found to be the
principal factors governing the rate of deamidation. The effect of amino acids in position n−1 was found
to be negligible.
Conclusions. Chemometric analysis employing reduced physicochemical parameters can provide an
accurate prediction of chemical instability in peptides and proteins. The relative importance of these
various factors could also be determined.

KEY WORDS: asparagine deamidation rates; chemometrics; multivariate analysis; physicochemical
property scales; projection to latent structures.

INTRODUCTION

The assessment of the stability of a new protein drug
candidate typically takes place after the protein sequence has
been selected, expressed and committed to development.
Since the development of stabilizing formulations and man-
ufacturing processes involves expensive and time consuming
screening experiments, tools that are predictive of protein
stability from primary sequence data would be advantageous
to the molecule design and selection process.

The deamidation of asparagine (Asn) residues is a
common degradation pathway for peptides and proteins,
both in vitro and in vivo (1–5). The deamidation reaction is
spontaneous, can impact the structure and function of the
molecule, and occurs at rates that can limit the half-life of the
protein. The deamidation reaction is particularly problematic
in the development of protein-based pharmaceuticals where
degradation during manufacturing and storage reduces the
practical shelf-life of a drug product (5–8). Quantitative
models of protein deamidation would be of great value in
design and development of new protein pharmaceuticals (6)
and would increase mechanistic insight into this important
degradation process.

In aqueous solution above pH 6, the primary mechanism
of deamidation involves the formation of a succinimide
intermediate through intramolecular nucleophilic attack of
the Asn side-chain carbonyl-carbon by the backbone nitrogen
of the next residue (n+1 position, see Fig. 1) (9,10). In low pH
solutions, deamidation via direct hydrolysis of the side-chain
amide is the predominant reaction mechanism. The rate of
the reaction varies widely with both intrinsic (primary
sequence, presence of secondary and tertiary structure) and
extrinsic (pH, temperature, buffer composition) factors.
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Among the intrinsic factors, the effects of neighboring
amino acids have been widely studied. For instance, the size
of the side chain in the n+1 position has a dramatic effect on
reaction rate, presumably by steric hindrance of intramolec-
ular cyclization (2,11–14). For this reason, Asn residues
followed by glycine, serine, and alanine have been shown to
deamidate much faster than when proximal to bulkier amino
acids.

Serine and histidine can accelerate Asn deamidation,
apparently by hydrogen bonding to the carbonyl oxygen of
the Asn side chain, making it more electrophilic, thereby
increasing the rate of intramolecular nucleophilic attack (2).
In addition, the acidity of the n+1 amino acid has been
implicated in controlling deamidation rates, as the proton
must be removed to render the amide sufficiently nucleophilic
(1,15,16). Amide hydrogen exchange and deamidation rates
are similarly base-catalyzed, and the relationship between the
rates of deamidation of Asn residues and the hydrogen
exchange rate of the n+1 residue has been examined for a
small number of sequences (15,16). Those results suggest that
the acidity (or its surrogate, amide exchange rate) of the n+1
residue backbone amide impacts deamidation rate. Recently,
Peters and Trout examined the elementary steps in the
deamidation reaction of H2N-Asn-NH-CH3 using density
functional theory (10). Their results indicate that deprotona-
tion of the n+1 residue lowers the deamidation reaction
barrier significantly.

Another chemical property that is likely to affect
deamidation rates is the flexibility of the peptide backbone,
by permitting or hindering the adoption of the appropriate
backbone geometry for intramolecular cyclization (17) (see
Fig. 1). The retardation of deamidation rate within regular
secondary (18,19) or tertiary (20) structures is a further
indication that flexibility plays an important role. Moreover, it
has been reported that flexibility affects acidity properties
(21), where Gly residues have been found to be more acidic
by being able to sample more of conformational space. Thus,
both the flexibility and acidity of Gly residues facilitate
deamidation.

Therefore, susceptibility to deamidation appears to
depend upon a variety of physicochemical properties (amide
proton acidity, chain flexibility, steric bulk of the side chains,
hydrogen bonding capacity, etc.). Attempts to compose
mathematical models focused on any one property at a time

are inevitably deficient, because any substitution of one
amino acid for another will alter more than one of the
physicochemical properties. For example, even the most
sophisticated electrostatic models appear to be unable to
explain fully the effects of multiple mutations in systems such
as the cold shock protein from Bacillus species (22–25). Any
time multiple properties vary at once, chemometric analysis is
warranted. This study seeks to provide a framework for
quantitatively determining the relative importance of the
physicochemical factors on the deamidation reaction. The
PLS models described below provide the first multivariate
approach for combining these important factors into a single
scheme. This work also reflects the first use of multivariate
statistical methods for assessing the stability propensity of
peptides and proteins.

A number of quantitative property scales have been
developed for amino acids. Based on a wide variety of
physicochemical properties, principal component analysis
has yielded a small number of ‘reduced’ properties that are
able to reproduce adequately the original properties (26–28).
These reduced properties have been used in quantitative
structure-activity relationship (QSAR) studies for peptides
(26,27). The deamidation of Asn residues makes an excellent
subject for such an analysis, because the reaction rates are
highly sequence-dependent, and a nearly comprehensive set
of intrinsic rate values is available in literature. Robinson et
al. have published deamidation half-lives for 306 pentapep-
tide sequence variants, Gly-X-Asn-Y-Gly, where X (n−1) and
Y (n+1) were varied over the naturally-occurring amino acids
(29–31).

An important advantage of using reduced properties in
PLS models of the deamidation reaction is that multiple
response variables can be considered simultaneously. For
example, the biological activity of a subset of peptides could
be included as a second response variable (32). From such a
model, the reduced properties that most favored biological
activity and while limiting deamidation could be derived and
translated into a protein sequence with optimal activity and
stability.

Three different reduced property scales were examined
and used to construct projection to latent structures (PLS)
models of the deamidation rates. The effects of flexibility and
amide exchange rates were also explicitly considered. The
PLS models presented here are relevant to the succinimide-
mediated (base-catalyzed) route, which is the predominant
deamidation reaction mechanism except in highly acidic
media. This study represents the first example of using
reduced amino acid properties to predict chemical instability
in a polypeptide. The use of PLS allows the relative
importance of the determinants of the reaction (flexibility,
steric bulk, NH acidity, etc.) to be compared quantitatively.

METHODS

Chemometrics. There are many multivariate statistical
methods available to identify and quantify correlations in
large complex data sets. Projection to latent structures (PLS)
is the most widely used chemometric method. PLS allows for
the examination of correlations between a data set of
properties (in this case, reduced properties describing the

Fig. 1. The rate of base-catalyzed asparagine deamidation is affected
by the properties of the neighboring residue side-chains in position 1
(n−1) and position 3 (n+1).
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amino acid substitutions) and a quantitative endpoint (e.g.,
the half-life for deamidation in a pentapeptide).

The descriptive variable matrix (called the X-matrix) was
composed of mathematical representations of the peptide
sequences with respect to the physicochemical properties of
constituent amino acids. The descriptive variable matrix and
the deamidation rates reported by Robinson and Robinson
were subject to PLS modeling (29–31). The PLS models were
analyzed to determine the accuracy, robustness and compre-
hensiveness of the predictive models. Regression coefficients
were extracted from the models to determine which variables
had a statistically significant influence on the response
variable (e.g. deamidation half-life). Detailed descriptions of
the independent steps are provided in the following sections.

Mathematical Representation of Pentapeptide Sequences. In
order to perform multivariate analysis on the Asn deamidation-
rate data of Robinson and Robinson, descriptor variables for
each amino acid in the data set were identified (29–31). Each
amino acid (AA) in the sequence was represented by a set of
reduced properties. These reduced properties were generated
using PCA, considering a wide range of AA properties, such as
surface area, mass, volume, molecular weight, pKa(s), pI,
aqueous solubility, hydrophobicity, polarizability, etc., thereby
condensing a large number of descriptors for each AA to a few
principal (reduced) properties (26,27).

Three different sets of physicochemical parameters were
considered for their ability to predict Asn deamidation rates.
The first set of reduced properties, named z-scores, was
reported by Hellberg and coworkers, and included three
values, where z1 is related to the hydrophilicity of the amino
acid, z2 is related to its steric bulk, and z3 is related to its
polarity and electronic properties (27). In subsequent work, a
five-parameter set of z-scores was published (26). This
extended set of reduced properties, referred to as zz-scores,
provided a better fit to the measured properties, but the
association of the zz4 and zz5 to a particular chemical or
physical property was less clear. The zz4 scale is positively
correlated with the heat of formation of the residue and
negatively correlated with the electronegativity. The zz5 scale
was positively correlated with electrophilicity (energy of the
lowest unoccupied molecular orbital) and negatively corre-
lated with the energy of the highest occupied molecular
orbital and polarizability of the residue. A third set of
parameters was considered, called PP values (28). As with
the z-scores, there were three reported values for each amino
acid. In general terms, PP1, PP2, and PP3 correspond to
polarity, hydrophobicity, and hydrogen bonding capability,
respectively. Physicochemical descriptions for each of the
reduced property scales are summarized in Table I.

Interaction between each fundamental parameter at each
position in the sequence is expected. Thus, all possible cross
terms between each reduced property (i.e., z-, zz- or PP-
score) within a given residue and between residues were
considered explicitly. In the numbering schemes discussed
below, the n−1 residue is labeled position 1, the Asn residue is
position 2, and the C-terminal residue is position n+1, and is
labeled position 3. Since the Asn residue is constant, only
values at positions n−1 and n+1 were considered in the
mathematical models. Quadratic models were also constructed,
i.e. squared terms for each reduced property were included.

Calculation of Amide Hydrogen Exchange Rates. One
chemical property that is not included in determination of the
z-, zz- or PP-scores is the intrinsic amide exchange rate. Since
this property is correlated with acidity, the amide exchange
rate may be an important predictor of deamidation rates.
Therefore, this factor was explicitly considered. Amide
hydrogen exchange rate constants of the n+1 residues were
calculated for each sequence according to the empirical
equations of Englander and coworkers (33). The rate
constants (k) were converted to half-lives in accordance with
a first-order reaction at pH 7.5 to match the conditions and
scaling of the deamidation data (i.e., t1/2=0.693/k).

Flexibility Parameters. Another intrinsic chemical prop-
erty that was included in some of the models was flexibility of
the peptide chain. The proper orientation of certain moieties
is essential for succinimide formation, the first step in Asn
deamidation (9,17). Flexibility was measured using the
location parameters developed by Smith et al. (34). They
are based on the B-factors from numerous crystal structures
of proteins.

PLS Modeling. The deamidation rates, shown in
Table II, were obtained from the published values of
Robinson et al. and corrected for acid-hydrolysis (29–31).
All statistical modeling was performed with the Unscram-
bler® software (CAMO, Corvallis OR). Detailed descriptions
of PLS have been published elsewhere (35–37). In this study,
PLS was used to quantify the effect of an assortment of
descriptive variables (i.e. residue-specific reduced properties,
flexibility parameters, and hydrogen exchange rates) of each
peptide on the rate of asparagine deamidation. A matrix of
the descriptive variables was assembled, where each row of
the matrix contained the descriptive variables for one of the
sequences based solely on its AA composition (306 rows).
This collection of sequence-specific variables formed the X-
matrix; the deamidation rate data comprised the dependent
variable (Y-variable). Mathematical models can be con-
structed that explain the greatest amount of variance in the
dependent variable(s) of interest (the Y-variable or Y-
matrix). The best single description of the relationship

Table I. Summary of the Reduced Property Scales Examined in the
PLS Models (26,28)

Scale Abbreviation Physicochemical Properties

z-scores z1 hydrophilicity
z2 steric bulk, polarizability
z3 polarity, electronegativity

zz-scores zz1 hydrophilicity
zz2 steric bulk, polarizability
zz3 polarity, electronegativity
zz4 heat of formation
zz5 electrophilicity, hardness

PP scores PP1 polarity
PP2 size, hydrophobicity
PP3 hydrogen bonding capacity

(positive for H-bond acceptors,
negative for H-bond donors)

The physicochemical properties that correlate positively and neg-
atively with the scales are listed
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between the variation in the X-matrix and the endpoint (the
Y-matrix) is called the first principal component, PC1. The
second most important (in terms of describing the variance in
the Y-matrix) component is called the second principal
component, PC2, and so on. Each of the PCs contains some
contribution from each of the variables in the X-matrix.

The final model is composed of a number of PCs that
together provide an adequate description of the Y-matrix.
Regression coefficients can be calculated for each variable in
the X-matrix. If a variable within the X-matrix contributes
heavily to the construction of a given PC, then it is ranked as
being significant. In summary, PLS takes information from
the X-matrix, calculates the desired number of PCs, and
constructs a suitable model. The model that includes all of the
samples is termed a calibration model. The overall coefficient
of determination (r) indicates the quality of the model.

Due to the diversity of scales, all of the variables were
normalized by dividing by the standard deviation using this
weighting option in the Unscrambler® software. This gives
each X-variable an equal opportunity to influence the model.
The jackknife algorithm was used for all PLS models to
determine the variables in the X-matrix that were statistically
significant with respect to a 95% confidence interval, and
Hotelling T2 ellipses were used to demarcate outliers in PLS
score plots (38,39).

The models were validated using a full cross validation
protocol, which provides a rigorous description of the validity
of a PLS model (37,38). Using the full cross validation
method, one sample at a time was excluded from the
calibration data set, and the model was calibrated using the
remaining samples (37,40,41). The value for the excluded
sample was then predicted, and the residuals were computed
to assess the validity of the model. Regression coefficients are
reported for both the original calibration set and for the
validation set (generated by full cross validation).

RESULTS

PLS Regression of Condensed Sequence Properties and
Deamidation Rates. The initial PLS regression models were
constructed using the original deamidation half-lives
(Table II) as the endpoint or Y-variable. Approximately
45% of the Y-variance (i.e., the variance in the deamidation
half-lives) was explained by a PLS model with the z-scores for
the amino acids in positions 1 and 3 (n−1 and n+1) as the X-
matrix (Table III). Inclusion of all possible cross terms plus
quadratic terms (the squares of the z-scores at each position)
produced PLS models that explained 74% of the variance in
the deamidation half-lives. Excluding the z-scores for the n−1
residue slightly increased the amount of the described
variance in the deamidation half-lives.

Linearization of Deamidation Rates. The half-lives for
asparagine deamidation occur over a wide range, covering
more than two orders of magnitude (Table II). Care must be
taken when modeling broadly ranged data, because values at
either end of the range can dominate curve-fitting. Since PLS
employs linear principal components and extreme values in
the response variable can have a magnified impact on the
quality of the model, the data must be compressed in order to
obtain satisfactory mathematical models. For this study, all
factors were weighted by the reciprocal of the standard
deviation (1/σ), a type of standardization of variables that is
common in PLS modeling (37,40,42). However, the 1/σ
normalization has a limited effect when the range is much
wider than the standard deviation or the relationship between
the response and predictive variables is non-linear. In order
to address this issue, two different approaches were evaluated
for linearization of the deamidation half-lives, namely using
the square root ((t1/2)

1/2) and the natural logarithm (ln(t1/2))
of the half-life (43). Such linearization is often used in

Table II. Half-Lives in Days for Asparagine Deamidation in Gly-Xxx-Asn-Yyy-Gly Pentapeptides Incubated at 37°C (adapted from Robinson
and Robinson (4,30)

Yyy Gly His Ser Ala Asp Thr Cys Lys Met Glu Arg Phe Tyr Trp Leu Val Ile Mean Median

Xxx
Gly 1.0 9.2 11.8 21.2 28.1 40.0 40.8 48.5 50.7 74.6 58.2 64.5 64.1 77.8 105.4 230.4 297.6 72.0 54.5
Ser 1.0 8.3 15.1 24.2 30.4 46.0 60.7 55.9 55.3 60.1 60.1 52.5 65.2 77.5 111.5 239.9 295.4 74.1 58.0
Thr 1.0 9.6 17.1 24.7 28.0 50.3 55.9 58.0 47.9 61.3 51.5 77.1 81.4 73.2 111.5 244.2 289.0 75.4 56.9
Cys 1.1 10.8 19.0 26.5 30.7 49.0 46.3 46.9 65.0 48.6 84.0 74.6 84.8 112.6 120.8 235.7 315.9 80.7 57.0
Met 1.0 10.2 15.2 22.2 26.5 43.8 49.9 60.9 57.3 73.1 59.2 62.4 74.7 93.8 114.6 216.7 284.7 74.5 60.0
Phe 1.2 10.2 18.1 24.3 27.5 39.2 46.8 58.6 59.0 62.9 61.9 70.1 75.8 103.3 119.8 208.2 297.6 75.5 60.3
Tyr 1.5 10.2 11.9 24.4 28.5 38.3 48.9 55.5 64.8 41.2 57.3 58.4 71.2 121.8 119.8 248.4 318.1 77.7 56.4
Asp 1.5 9.7 17.0 24.1 29.5 52.7 54.5 76.6 57.7 47.1 88.2 70.9 71.0 81.1 112.6 248.4 309.4 79.5 64.2
Glu 1.5 9.0 16.4 25.9 32.1 37.0 44.4 78.6 60.0 60.8 81.7 70.8 95.6 99.6 132.1 277.2 289.0 83.0 65.8
His 1.1 10.7 15.7 24.7 31.3 47.5 44.1 50.5 63.6 70.0 49.2 72.8 93.1 96.5 117.7 254.8 340.8 80.8 57.1
Lys 1.0 10.5 15.6 23.7 24.1 58.5 49.3 53.9 61.4 73.2 57.8 70.7 97.9 99.3 120.8 253.7 325.6 82.8 59.9
Arg 1.0 10.0 14.3 24.5 34.9 51.0 50.8 49.9 75.1 68.9 68.0 68.9 91.0 129.0 130.1 254.8 323.5 85.0 68.4
Ala 1.1 9.3 14.9 22.6 32.0 43.7 64.2 56.3 59.6 74.8 62.9 66.1 74.6 132.1 125.9 262.3 311.6 83.2 63.5
Leu 1.1 10.7 16.7 25.2 32.2 46.4 53.9 60.6 63.1 57.1 62.6 73.1 76.4 75.2 158.0 305.1 410.9 89.9 61.6
Val 1.2 10.2 18.2 27.6 33.6 50.2 63.7 64.3 66.2 65.3 68.0 67.2 80.0 89.9 157.0 301.9 383.4 91.1 65.8
Ile 1.3 11.5 14.5 26.0 33.9 46.6 53.0 64.9 59.2 59.0 67.0 62.0 80.1 87.6 157.0 306.2 403.2 90.2 60.6
Trp 1.8 11.3 15.5 30.8 43.8 37.1 84.0 59.8 64.7 76.4 74.6 71.7 93.7 137.3 135.2 232.5 296.5 86.4 73.2
Pro 1.2 12.8 18.9 31.9 48.9 63.6 60.5 68.4 79.2 93.1 73.6 101.3 115.6 123.9 185.2 381.2 482.2 114.2 76.4
Mean 1.2 10.2 15.9 25.2 32.6 46.8 54.0 59.3 61.7 64.9 65.9 69.7 82.0 100.6 129.7 261.2 331.9 83.1 63.3
Median 1.1 10.2 15.7 24.7 32.0 46.6 53.0 58.6 61.4 64.9 62.9 70.1 80.1 99.3 120.8 253.7 315.9 82.8 62.1
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chemometric studies to allow proper fitting of widely ranging
variables and non-linear relationships (42,44–47).

The models that were calculated with ln(t1/2) resulted in
significantly less curvature than when calculated with the raw
half-life data or the square root scaling, independent of which
reduced property scale was used (Fig. 2). Therefore, the
remainder of the PLS models presented in this study employ
ln(t1/2) as the Y-matrix.

Comparison of Reduced Property Scales. PLS regression
results of ln(t1/2) with the three different property scales for
the n+1 amino acid are compared in Fig. 3. The PLS model
using the zz-scores captured more of the Y-variance and
displayed lowest root mean square error of prediction, while
the z-scores were better at predicting the deamidation half-
life than the PP-scores (Fig. 3 and Table IV). Note that the zz-
score models use five factors per amino acid compared to
three for the z- and PP-score reduced properties.

Inclusion of Flexibility and Hydrogen Exchange Param-
eters. The addition of peptide flexibility parameters and/or
the amide proton exchange half-lives (used as the natural
logarithm of the exchange rate, denoted as ln(HX)) improves
the quality of all of the models (Tables III and IV). PLS
models including both ln(HX) and the flexibility parameters
capture >94% of the variance in the Y-matrix and markedly
reduce the root mean square errors of prediction for each
reduced property scale (Table IV). When included along with
the z-scores, ln(HX) becomes the most influential variable in
the X-matrix (Table V). However, ln(HX) has only a modest
effect on the zz-score models, because the five-component zz-
scores already capture more than 95% of the Y-variance (the
natural logarithm of the deamidation half-lives, ln(t1/2)).

Performance of z-Score Models. Regression coefficients
for five different PLS models of ln(t1/2) are listed in Table V.
Only the parameters that were found to be statistically
significant are presented (within the 95% confidence interval
from jackknife analysis). In all of the PLS models, the
deamidation half-life is primarily governed by the reduced
properties in position 3 (n+1). The amino acid in position 1
(n−1) has virtually no effect.

All three z-scores for the n+1 residue are statistically
significant in models that describe more than 90% of the Y-

variance (Models 2–5, Table V). The 3z1 variable, which
reflects the hydrophilicity of the n+1 residue, has the largest
regression coefficient and is negatively correlated with
deamidation half-life, that is, longer deamidation half-lives
arise from decreased hydrophilicity of the n+1 amino acid.
Similarly, 3z3 (describing electronic properties or polarity) is
negatively correlated with ln(t1/2). The 3z2 variable is
positively correlated with the deamidation half-life, ln(t1/2).
In other words, the deamidation reaction was more rapid
when the bulk of the n+1 residue side-chain was small. The
squared terms of 3z2 and 3z3 and interaction terms involving
3z2 were significant in every model (Table V).

Response surface plots were created to visualize the
interrelationship between the predictive variables (Fig. 4).
The contours in these plots represent the response variable,
ln(t1/2), which is color-coded according to the horizontal bar
at the bottom of the figure. In the top panel, a singular well-
defined region of maximal deamidation half-life corresponds
to negative values of 3z1 (hydrophilicity) and positive values
of 3z2 (size). However, the response of ln(t1/2) to 3z3 (middle
and bottom panels, Fig. 4) indicates that the longest
deamidation half-lives correspond to values at both the
negative and positive extremes of 3z3 (polarity and electro-
negativity). The shape of this response surface indicates that
there is significant non-linearity in the relationship between ln
(t1/2) and 3z3 and reveals how the squared-terms are
significant to the models.

The natural logarithm of the amide proton exchange
half-lives were significantly positively correlated with the
deamidation half-lives. The magnitude of the 3z1 regression
coefficient was decreased, but the magnitudes of the 3z12,
3z22 and 3z32 coefficients were increased when ln(HX) was
included in the model. In addition, ln(HX)*3z1 and ln(HX)*3z3
are statistically significant. These results suggest that the
increased Y-variance explained by the model (97% in Model 2
relative to 81% in Model 1, Table V) is due to amide proton
exchange rate for the nitrogen immediately after the Asn
residue (i.e., in position 3), a property that is not contained in
the z-scores.

Inclusion of the flexibility parameter also influences the
magnitudes of the regression coefficients for the z-scores
(Table V). Although 3z1, 3z2 and 3z3 were only slightly
affected, the flexibility parameter of the third residue, and the
interaction terms between the flexibility and z-scores of the
third residue (3z1 and 3z3) are statistically significant. Like

Table III. Results of PLS modeling Using z-Scores to Fit the Asparagine Deamidation Half-Life (t1/2) Values

Positions Interaction Terms Other factors r (calibration) r (validation)
Captured
Y-variance # of PCs

RMSEP
(days)

1 & 3 none none 0.673 0.655 45% 1 63.0
1 & 3 interaction none 0.808 0.783 65% 2 51.9
1 & 3 square none 0.735 0.711 54% 2 58.7
1 & 3 interaction & square none 0.860 0.833 74% 4 46.1
3 interaction & square none 0.867 0.841 75% 5 45.0
3 interaction & square ln HX 0.940 0.936 88% 4 29.2
3 interaction & square flex 0.919 0.909 84% 8 34.7
3 interaction & square ln HX & flex 0.950 0.947 90% 5 26.6

The correlation coefficients for the calibration and validation models (r) are shown with the percentage of the variance in the deamidation half-
life captured by the model, the optimal number of PCs, and the root mean square error of prediction after cross validation (RMSEP).
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the amide exchange rate, flexibility of the third residue is
another property that is not captured in the z-scores.

When ln(HX) is included along with flexibility parame-
ters and z-scores, the regression coefficient for the flexibility
parameter becomes insignificant (Model 4, Table V). The
interaction terms of the flexibility parameter with 3z1 and 3z3
are still important to the model. These results suggest that
flexibility is less important than the acidity of the succeeding
amide proton, although both influence deamidation rates.

Performance of zz-Score Models. Each of the zz-scores
contributed statistically significant regression coefficients in
the PLS model of ln(t1/2) (Model 5, Table V). The most
important parameters in the model were 3zz3 (polarity),
3zz1*3zz2 (product of hydrophilicity and steric bulk),
3zz2*3zz3, 3zz1 and 3zz2*3zz5 (product of steric bulk and
electronegativity). Given that z1, z2 and z3 are analogous to
zz1, zz2, zz3, the increased Y-variance explained in Model 5
(with respect to Model 1) can be attributed to the contribu-
tions of zz4 and zz5. Both 3zz4 (heat of formation) and 3zz5
are negatively correlated with ln(t1/2). As with the z-score
models, the properties of the amino acid in position 1 (n−1)
had little influence on the PLS models, and exclusion of the z-
scores for the n−1 amino acid had minor effects on the
amount of Y-variance explained (Tables III & IV).

Performance of PP-Score Models. Regression coeffi-
cients for four PLS models of ln(t1/2) are listed in Table VI;
only the coefficients that were found to be statistically
significant are presented. The PP-scores terms representing
the size, hydrophobicity (3PP2) and hydrogen bonding
capacity (3PP3) of the n+1 residue had the most influence
on the models. Of the PP-scores, 3PP1 (polarity) had the least
influence on the models.

In Model 1 of Table VI, 3PP12 and 3PP3 had the largest
regression coefficients, suggesting that the rate of
deamidation was positively correlated with the polarity and
hydrogen-bond-accepting capability of the n+1 amino acid.
When ln(HX) was included in the calculation (Model 2
Table VI), neither 3PP1 nor 3PP3 alone was statistically
significant, but 3PP2 was negatively correlated with ln(t1/2).
Each of the PP-scale interaction terms with ln(HX)
significantly influenced the model, and 3PP2*ln(HX) had
the largest (negative) regression coefficient. The model
indicates that deamidation half-lives were shorter when the
size/hydrophobicity and amide exchange rate of the n+1
residue decreased. The size, hydrophobicity and hydrogen
bonding capability information provided by 3PP2 and 3PP3
were largely captured by hydrogen exchange half-life term (ln
(HX)).

When the flexibility parameters were included in the
calculation (Model 3 of Table VI), the Y-variance (in ln(t1/2))
explained by the model increased to ~97%. The model only
produced three statistically significant X-variable regression
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coefficients, i.e. 3loc*3PP1, 3PP1*3PP2, and 3PP32. These
three variables accounted for approximately 74% of the
explained variance in ln(t1/2). The regression coefficient for
3loc*3PP1 was negatively correlated with ln(t1/2) indicating
that deamidation half-lives decrease with the flexibility and
polarity of the n+1 residue. The regression coefficient for
3PP32 was large and positive, again indicating that the
deamidation half-lives were longer when the n+1 residue
was a hydrogen bond donor.

When the flexibility and hydrogen exchange parameters
were simultaneously included in the calculations, the percent
Y-variance explained by the model increased slightly and a
larger number of X-variables had significant regression
coefficients (Model 4 Table VI). The most important param-
eters were 3loc*3PP1, 3PP12, ln(HX)*3PP1, and ln(HX)*3loc.
As with the z-score models, the deamidation half-lives were
positively correlated with decreasing polarity and decreasing
flexibility of the n+1 residue.

DISCUSSION

Comparison of Reduced Property Scales. Three different
reduced property scales were considered in this study: z-
scores, zz-scores, and PP-scores. Using these reduced proper-
ties alone, the PLS models developed here capture as much
as 90% of the variance in the deamidation half-life, as
described in terms of physicochemical properties of the
flanking amino acids (Table III). The captured variance is
even greater when one of the linearized forms of the
deamidation half-life is used as the Y-variable (see below).
The zz-scores, by themselves, can account for 90–97% of the
variance in the scaled deamidation half-lives. For the more
limited, three-component z- and PP-scores, the z-scores
proved to be more effective at predicting chemical reactivity,
even though they were never constructed to do so. Together,
these results indicate that reduced properties are capable of
accurate prediction of peptide chemical reactivity.

Linearization of the Deamidation Half-Life. Since there
was clearly some non-linear behavior in the deamidation half-
lives, two different schemes (the natural logarithm and the
square root) were evaluated for linearizing the deamidation
data. This is a common approach in chemometric modeling
for data that extends over orders of magnitude (37,42,44–47).
The natural logarithm of the deamidation half-lives provided
a more effective linearization than the square root of the
half-lives (Fig. 3 and compare Tables V and VI). The
increased linearity in the natural logarithm normalization
can be rationalized by the fact that each variable is then
proportional to the corresponding reaction activation energy.
Models of deamidation produced by Robinson & Robinson
and Capasso (separately) employed logarithmic scales to take
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advantage of the additivity of substituent effects and propor-
tionality with the activation energy (30,48).

Interaction, Squared and Sequence Properties. Inclusion
of interaction parameters was essential, especially between
the reduced properties describing the residue in position n+1.
Inclusion of the sequence properties, flexibility and/or amide
proton exchange half-lives, improved the models and
decreased the error of prediction (RMSEP). Similarly,
inclusion of the squared terms for the reduced and sequence
properties improved the accuracy of all of the models. This
result indicated that the relationship between the predictive

and response variables was non-linear even after linearization
of the deamidation half-lives (e.g. (t1/2)

1/2 or ln(t1/2)).

Effect of the n−1 Residue. The PLS regressions per-
formed here also indicate that none of the reduced properties
associated with residue n−1 are significant predictors of the
deamidation half-lives (Table V). Terms associated with the
residue at the n−1 position could be excluded from the cal-
culations without decreasing the accuracy of the mathematical
models (Tables III, IV, and V). Robinson and Robinson, the
originators of the deamidation data used in this study, note that
the n−1 residue effects are relatively small and subject to

Table IV. Results of PLS Modeling Using z-Scores and All Squared and Interaction Terms to Fit the Natural Logarithm of the Asparagine
Deamidation Half-Life (t1/2) Values

Scale Positions Other factors r (calibration) r (validation)
Captured
Y-variance # of PCs

RMSEP
(days)

z-scores 1 & 3 None 0.912 0.898 81% 5 1.7
z-scores 3 only None 0.910 0.905 82% 5 1.7
z-scores 1 & 3 flex 0.966 0.952 91% 7 1.5
z-scores 3 only flex 0.962 0.959 92% 6 1.4
z-scores 1& 3 ln HX 0.990 0.987 96% 9 1.2
z-scores 3 only ln HX 0.988 0.987 97% 8 1.2
z-scores 3 only ln HX & flex 0.988 0.988 98% 7 1.2
PP-scores 3 only None 0.840 0.829 70% 8 2.0
PP-scores 3 only ln HX 0.942 0.942 89% 7 1.5
PP-scores 3 only flex 0.985 0.985 97% 11 1.2
zz-scores 3 only None 0.977 0.974 96% 5 1.3
zz-scores 1 & 3 None 0.980 0.971 97% 6 1.3
zz-scores 1 & 3 ln HX 0.991 0.987 97% 6 1.2
zz-scores 1 & 3 ln HX & flex 0.990 0.985 97% 6 1.2

The correlation coefficients for the calibration and validation models are presented along with the percent of variance in the deamidation half-
life captured by the validated model and the root mean square error of prediction after cross validation (RMSEP).

Table V. Regression Coefficients for PLS Models of the Natural Logarithm of the Deamidation Half-Lives with z-Scores or zz-Scores

Model 1 Model 2 Model 3 Model 4 Model 5

z-scores z-scores & lnHX z-scores & flex z-scores, lnHX & flex zz-scores

Y-variance explained: 81% Y-variance explained: 97% Y-variance explained: 95% Y-variance explained: 95% Y-variance explained: 95%

R (val.)=0.898 R (val.)=0.987 R (val.)=0.986 R (val.)=0.986 R (val.)=0.974

3Z1 −0.642 ln HX 0.588 3Z1 −0.706 ln HX 0.375 3ZZ1 −0.386
3Z3 −0.386 3Z1 −0.439 3Z2 0.102 3Z1 −0.380 3ZZ2 0.200
3Z1*3Z2 0.223 3Z2 0.159 3Z3 −0.416 3Z2 0.177 3ZZ3 −0.497
3Z2*3Z3 0.352 3Z3 −0.310 3loc −0.229 3Z3 −0.302 3ZZ4 −0.270
3Z22 −0.206 3Z1*3Z2 −0.433 3Z1*3Z2 0.130 ln HX*3Z2 −0.247 3ZZ5 −0.198
3Z32 0.249 ln HX*3Z1 0.181 3Z1*3loc 0.431 ln HX*3Z3 −0.075 3ZZ1*3ZZ2 0.442

ln HX*3Z3 0.446 3Z2*3Z3 0.385 3Z1*3Z3 0.228 3ZZ1*3ZZ3 −0.110
(ln HX)2 0.586 3Z3*3loc 0.403 3Z1*3loc 0.295 3ZZ1*3ZZ4 −0.191
3Z12 −0.368 3Z12 −0.402 3Z3*3loc 0.253 3ZZ2*3ZZ3 0.400
3Z22 −0.408 3Z22 −0.173 (ln HX)2 0.254 3ZZ2*3ZZ5 −0.370
3Z32 0.374 3Z32 0.446 3Z22 −0.244 3ZZ3*3ZZ4 0.228

3loc2 0.195 3Z32 0.248 3ZZ3*3ZZ5 −0.129
3ZZ4*3ZZ5 −0.111
3ZZ22 −0.326
3ZZ32 0.339

Only parameters that were found to be statistically significant are shown. The flexibility parameters of the first and third residues are indicated
by 1loc and 3loc, respectively.
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uncertainty inherent to the experimental system (including
buffer effects) (30).

Physicochemical Determinants of Deamidation. Each of
the reduced property scores for the n+1 residue appears to be
a statistically significant predictor of the deamidation half-
lives (Table I). When using z-scores, the most important
reduced property is the hydrophilicity for the n+1 residue
(3z1), as indicated by the regression coefficients obtained
from different models (Table V). The influence of polarity/
electronic properties (3z3) and size/bulk (3z2) properties on

the deamidation rates was also important, as seen in the
squared and interaction terms (Model 2, Table V). An
analogous interpretation arises from the models employing
the PP-scores, where parameters for polarity (3PP1), hydro-
gen bonding capacity (3PP3) and size/hydrophobicity (3PP2)
scores each contributed significantly to the models.

Regardless of the property scale employed, the phys-
icochemical determinants of deamidation were observed to
be highly interrelated and to respond to the deamidation half-
lives nonlinearly. In fact, squared terms of the reduced
properties were significant in every model. The response
surface diagrams in Fig. 4 provide a good visualization of this
effect. The area describing the longest deamidation half-lives
(shown in red and orange) transverse nearly the entire range
of hydrophilicity (3z1) of the n+1 residue, and for any given
value of 3z1, the deamidation half-life response to the polarity
of the n+1 residue appears parabolic.

Robinson and Robinson developed a primary sequence
model of asparagine deamidation based on the steric and
catalytic effects of the n+1 residue (30). In their model, the
probability that the n+1 residue prevents the asparagine side
chain from adopting reactive conformations (i.e., leading to
the formation of the succinimide intermediate) was effectively
accounted for by a model that included the steric bulk of the
side chain. In the PLS models, 3z2 (the property most closely
related to the size of the n+1 residue side chain) was, as
expected, consistently positively correlated with deamidation
half-life (Table IV). Thus, the reduced property, z2, provides
a meaningful description of the steric effects of n+1 residue
side chains that affect succinimide formation. The squared
term of 3z2 was significantly negatively correlated to the
natural logarithm of the deamidation half-lives in each of the
PLS models, indicating that the deamidation half-life depends
on 3z2 in a non-linear fashion.

Inspection of Table II confirms that the mean deamida-
tion half-lives do not increase predictably with increased mass
of the n+1 residue. A number of relatively heavy and/or
charged amino acids (e.g. histidine, lysine) have shorter half-
lives than some relatively small amino acids (e.g. valine). This
may explain the relatively small regression coefficients for the
3z2 variable. The model of Robinson and Robinson accounts
for these effects by adjusting for steric interference of the
deamidation reaction that is due to side-chain branching (e.g.
β-carbon) of the n+1 residues and catalytic effects specific to
particular residues. The z2 variable may not fully account for
the effects of side chain branching and is not expected to
account for catalytic effects of charge or polar amino acids.
Analogously, the interaction terms of z2 with z1 and z3 are
more powerful predictors of deamidation half-life than the
3z2 variable. For example, in Model 1 of Table V, 3z2 is
insignificant, but the 3z1*3z2 and 3z2*3z3 are significant
predictors of the natural logarithm of the deamidation half-
lives. A literal interpretation of this result is that the size/bulk
of the n+1 residue side chain is positively correlated with
deamidation half-life when the polarity and hydrophilicity are
simultaneously taken into account. This result highlights the
importance of the interaction terms in generating and
interpreting PLS models of chemical reactivity.

The increased hydrophilicity of the n+1 residue may
influence the deamidation half-life by affecting the acidity of
the amide proton. In PLS models of the amide proton
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exchange half-lives (not shown), the electronic properties and
polarities of the n+1 residue were found to contribute to the
exchange rate as well as the rate of deamidation. Thus,
the polarity of the n+1 residue can affect shortening of the
deamidation half-lives by increasing amide exchange rate
of that residue. If n+1 amide deprotonation and formation
of the succinimide-intermediate are rate-determining steps
in the deamidation reaction, then any property that con-
tributes to the electron-withdrawing nature of the amide
nitrogen will facilitate the reaction.

Deprotonation of the backbone amide nitrogen of the
n+1 residue has been hypothesized to be the rate-limiting step
and thus a principal factor in governing Asn deamidation
rates. Brennan and Clarke showed that unit increases in the
logarithm of deamidation rate roughly correlated to unit
increases in the logarithm of hydrogen exchange rate for a set
of ten dipeptides (15). A similar relationship is seen in the
analysis of 306 amino acid sequences used in this study (not
shown). The slope of linear relationship between the loga-
rithm of deamidation and hydrogen exchange rates was found
to be 0.95 (not shown). The magnitude of observed scatter
was largest in peptides with the fastest deamidation rates and
with charged residues in the n+1 position (Gly, Cys, His, Arg,
Asp). In ab initio studies of the deamidation reaction,
Radkiewicz and coworkers found that the deprotonated
amide of Asn-Gly sequences was stabilized by the high
conformational flexibility of the glycine residue relative to
other n+1 position amino acids (16). This effect would
promote the rapid deamidation observed inAsn-Gly sequences,
indicating why flexibility and acidity are both influential in
controlling Asn deamidation rates.

Taken together, the results presented here with the
reports of Robinson et al. and Peters et al. suggest that the
rate-determining steps to the deamidation reaction vary with
the identity n+1 residue (10,30). For some sequences, the

deprotonation of the n+1 residue may reduce the initial
energy barrier enough to allow the formation of the
tetrahedral intermediate to occur more readily than the loss
of ammonia from the tetrahedral intermediate. For other
sequences, the amplitude of the activation energy may be set
by other properties of the n+1 residue side chain (e.g. size/
bulk), and the activation energy for formation of the
tetrahedral intermediate may remain higher than that for
the formation of the succinimide regardless of protonation
state of n+1 residue. In either case, the deprotonation of the
n+1 residue amide is presumed to facilitate the reaction by
increasing the energy of the reactant sequence and decreasing
the relevant transition state energy (10).

Flexibility at residue n+1 was also found to be important.
As mentioned above, there is a steric component to
deamidation that proceeds through intramolecular cycliza-
tion. Likewise, an optimal set of dihedral angles exists for the
peptide backbone to engage in nucleophilic attack of the Asn
side chain carbonyl group, as outlined by Clarke (17). The
location parameters used here appear to be accurate descrip-
tors of peptide backbone flexibility (34). Even though they
were developed based on crystal structures of proteins, they
do seem to predict accurately the relative flexibility of the
peptide that would allow facile cyclization and subsequent
hydrolysis to the deamidated products. Since flexibility of the
polypeptide backbone can vary widely in folded proteins, this
methodology, although based on flexible peptides, could
provide useful predictions for larger globular proteins.

CONCLUSIONS

This study demonstrates that reduced amino acid proper-
ties are highly accurate predictors of chemical reactivity in
peptides. The z-scores produced the most accurate models of

Table VI. Regression Coefficients for PLS Models of the Natural Logarithm of the Deamidation Half-Lives With 3PP-Scores

Model 1 Model 2 Model 3 Model 4

3PP-scores 3PP-scores & lnHX 3PP-scores & flex 3PP-scores, lnHX & flex

Y-variance explained: 70% Y-variance explained: 89% Y-variance explained: 97% Y-variance explained: 98%

R (val.)=0.829 R (val.)=0.942 R (val.)=0.985 R (val.)=0.991

3PP2 −0.401 ln HX 0.383 3loc*3PP1 −2.08 ln HX −0.164
3PP3 −1.748 3PP2 0.180 3PP1*3PP2 −0.459 3loc −0.633
3PP1*3PP2 0.495 ln HX*3PP1 −0.299 3PP32 1.839 3PP2 0.494
3PP1*3PP3 1.054 ln HX*3PP2 −0.905 3PP1*3PP2 0.377
3PP2*3PP3 0.755 ln HX*3PP3 0.354 3PP1*3PP3 −0.625
3PP12 −1.494 3PP1*3PP3 −0.213 3PP2*3PP3 0.308
3PP22 −0.191 ln HX2 0.427 ln HX*3PP1 −1.436
3PP32 0.181 3loc*3PP1 2.094

3loc2 −0.160
3PP12 −1.495
3PP32 −0.572
3loc*ln HX 0.678
Ln HX2 −0.279

Only parameters that were found to be statistically significant are shown. The flexibility parameters of the first and third residues are indicated
by 1loc and 3loc, respectively.
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the deamidation rates, especially if the five-component zz-
scores were employed. The most accurate models required
linearization of the deamidation half-lives, where the natural
logarithm provides the most effective linearization. The
inclusion of interaction (i.e., cross) terms and squared terms
was also essential for a robust and accurate PLS model.

The reactivity of an asparagine residue is dominated by
the properties of the n+1 residue; the properties of the n−1
residue were negligible in PLS models of the deamidation
reaction rates. The properties that control the rate of
deamidation are closely related to the properties that control
the rates of amide proton exchange of the n+1 residue. The
extent to which the protonation state of the n+1 residue
governs the rate of deamidation varies with the properties of
the n+1 residue side chain. The reaction rate is also governed
by the hydrophilicity, size, polarity, and flexibility of the n+1
amino acid. While most of these properties have been
implicated in controlling deamidation rates, there has been
no methodology to quantify or rank order the relative
importance of each factor until this study.

The PLS analyses presented here exemplify an important
application of multivariate statistical methods. Accurate
prediction of chemical reactivity is a valuable asset in
developing stable peptides and proteins. This approach
requires no a priori knowledge of the reaction mechanism,
only the primary sequence.
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